首页 > 数学 > 题目详情
已知√2≤x≤8,求函数f(x)=(log2x/2).(log24/x)的最大值和最小值
题目内容:
已知√2≤x≤8,求函数f(x)=(log2 x/2).(log2 4/x)的最大值和最小值优质解答
因为√2≤x≤8
故:1/2≤log2^ x≤3,令t= log2^ x
故:1/2≤t≤3,
又:f(x)=(log2^ x/2).(log2^ 4/x)
=( log2^ x- log2^ 2)( log2^ 4- log2^ x)
=( log2^ x- 1)( 2- log2^ x)
=(t-1)(2-t)
=-t²+3t-2
=-(t-3/2)²+1/4
故:t=3/2时,取最大值1/4,此时log2^ x=3/2,x=2√2
当t=3时,取最小值-2,此时log2^ x=3,x=8
优质解答
故:1/2≤log2^ x≤3,令t= log2^ x
故:1/2≤t≤3,
又:f(x)=(log2^ x/2).(log2^ 4/x)
=( log2^ x- log2^ 2)( log2^ 4- log2^ x)
=( log2^ x- 1)( 2- log2^ x)
=(t-1)(2-t)
=-t²+3t-2
=-(t-3/2)²+1/4
故:t=3/2时,取最大值1/4,此时log2^ x=3/2,x=2√2
当t=3时,取最小值-2,此时log2^ x=3,x=8
本题链接: