首页 > 数学 > 题目详情
已知x满足不等式(2log12x+1)(log12x+3)≤0.求函数f(x)=(log2x4)(log2x2)的最大值和最小值.
题目内容:
已知x满足不等式(2log1 2
x+1)(log1 2
x+3)≤0.求函数f(x)=(log2x 4
)(log2x 2
)的最大值和最小值.优质解答
由不等式(2log12x+1)(log12x+3)≤0,可得-3≤log12x≤-12,故有-2≤log2x≤-13.令t=log2x,则-2≤t≤-13,函数f(x)=(log2x4)(log2x2)=(log2x-2)(log2x-1)=(log2x)2-3log2x+2=g(t)=(t-1)(t-2)=(t−32)2-1...
1 |
2 |
1 |
2 |
x |
4 |
x |
2 |
优质解答
本题链接: