首页 > 数学 > 题目详情
已知x满足不等式:2(log1/2x)²+7log1/2x+3≤0,则函数f(x)=(log2x/4)·(log2x/2)的最大值和最小值分别为
题目内容:
已知x满足不等式:2(log1/2 x)²+7log1/2 x +3≤0,则函数f(x)=(log2 x/4)·(log2 x/2)的最大值和最小值分别为优质解答
令t=log1/2 x
所以
2(log1/2 x)²+7log1/2 x +3≤0
变为
2t^2+7t+3 - 追问:
- 最小不应该是3/4么。
- 追答:
- 为啥?代入x=2^(3/2)=(1/2)^(-3/2) (log2 x/4)·(log2 x/2) =(log2 x-log 2 4)(log 2 x- log 2 2) =(3/2-2)(3/2-1) =(-1/2)(1/2) =-1/4 2(log1/2 x)²+7log1/2 x +3 =2(-3/2)^2+7(-3/2)+3 =9/2-21/2+3 =-3
优质解答
所以
2(log1/2 x)²+7log1/2 x +3≤0
变为
2t^2+7t+3
- 追问:
- 最小不应该是3/4么。
- 追答:
- 为啥?代入x=2^(3/2)=(1/2)^(-3/2) (log2 x/4)·(log2 x/2) =(log2 x-log 2 4)(log 2 x- log 2 2) =(3/2-2)(3/2-1) =(-1/2)(1/2) =-1/4 2(log1/2 x)²+7log1/2 x +3 =2(-3/2)^2+7(-3/2)+3 =9/2-21/2+3 =-3
本题链接: