首页 > 数学 > 题目详情
已知双曲线C1:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,抛物线C2:y2=2px(p>0)
题目内容:
已知双曲线C1:x2 a2
-y2 b2
=1(a>0,b>0)的左、右焦点分别为F1、F2,抛物线C2:y2=2px(p>0)与双曲线C1共焦点,C1与C2在第一象限相交于点P,且|F1F2|=|PF1|,则双曲线的离心率为 ___ .
优质解答
设点P(x0,y0),F2(c,0),过P作抛物线准线的垂线,垂足为A,连接PF2,由双曲线定义可得|PF2|=|PF1|-2a
由抛物线的定义可得|PA|=x0+c=2c-2a,∴x0=c-2a
在直角△F1AP中,|F1A|2=(2c)2-(2c-2a)2=8ac-4a2
∴y02=8ac-4a2
∴8ac-4a2=4c(c-2a)
∴c2-4ac+a2=0
∴e2-4e+1=0
∵e>1
∴e=2+3
故答案为:2+3
x2 |
a2 |
y2 |
b2 |
优质解答
由抛物线的定义可得|PA|=x0+c=2c-2a,∴x0=c-2a
在直角△F1AP中,|F1A|2=(2c)2-(2c-2a)2=8ac-4a2
∴y02=8ac-4a2
∴8ac-4a2=4c(c-2a)
∴c2-4ac+a2=0
∴e2-4e+1=0
∵e>1
∴e=2+
3 |
故答案为:2+
3 |
本题链接: