首页 > 数学 > 题目详情
【如图,已知四边形ABCD是正方形,对角线AC、BD相交于O,四边形AEFC是菱形,EH⊥AC,垂足为H.求证:EH=12FC.】
题目内容:
如图,已知四边形ABCD是正方形,对角线AC、BD相交于O,四边形AEFC是菱形,EH⊥AC,垂足为H.求证:EH=1 2
FC.
优质解答
证明:在正方形ABCD中,AC⊥BD,AC=BD,OB=1 2
BD=1 2
AC,
又∵四边形AEFC是菱形,
∴AC=CF,AC∥EF,
∵EH⊥AC,∠DBC=∠ABD=∠CBF=45°,
∴∠BOH=∠OHE=∠OBE=90°,
∴四边形BEHO是矩形,
∴EH=OB,
∴EH=1 2
AC=1 2
CF.
1 |
2 |
优质解答
1 |
2 |
1 |
2 |
又∵四边形AEFC是菱形,
∴AC=CF,AC∥EF,
∵EH⊥AC,∠DBC=∠ABD=∠CBF=45°,
∴∠BOH=∠OHE=∠OBE=90°,
∴四边形BEHO是矩形,
∴EH=OB,
∴EH=
1 |
2 |
1 |
2 |
本题链接: