如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE. (1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50° ①求证:AD=BE; ②求∠AEB的度数. (2)如图2,...
2023-03-16 05:09:12 128次 2016年初中毕业升学考试(山东菏泽卷)数学(解析版) 解答题 反馈错误 加入收藏 正确率 : 100%
题目内容:
如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.
(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°
①求证:AD=BE;
②求∠AEB的度数.
(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=CM+BN.
本题链接: