首页 > 数学 > 题目详情
已知l是过正方体ABCD-A1B1C1D1的顶点的平面AB1D1与下底面ABCD所在平面的交线.(1)求证:D1B1∥l;(2)若AB=a,求l与D1间的距离.
题目内容:
已知l是过正方体ABCD-A1B1C1D1的顶点的平面AB1D1与下底面ABCD所在平面的交线.
(1)求证:D1B1∥l;
(2)若AB=a,求l与D1间的距离.优质解答
(1)证明:在正方体ABCD-A1B1C1D1中,D1B1∥BD,
∵BD⊂平面ABCD,D1B1⊄平面ABCD
∴D1B1∥平面ABCD.
又∵平面ABCD∩平面AD1B1=l,
∴D1B1∥l.
(2) 在平面ABCD内,由D作DG⊥l于G,连接D1G,
在正方体ABCD-A1B1C1D1中,得 D1D⊥平面ABCD,
∴D1D⊥l,∵D1D∩DG=D,∴l⊥平面D1DG
∴D1G⊥l,即D1G的长即等于点D1与l间的距离.
∵l∥D1B1∥BD,∴∠DAG=45°.
∴DG=2
2
a,在直角三角形D1DG中,
则有 D1G=DG2+D1D2
=1 2
a2+a2
=6
2
a.
(1)求证:D1B1∥l;
(2)若AB=a,求l与D1间的距离.
优质解答
∵BD⊂平面ABCD,D1B1⊄平面ABCD
∴D1B1∥平面ABCD.
又∵平面ABCD∩平面AD1B1=l,
∴D1B1∥l.
(2) 在平面ABCD内,由D作DG⊥l于G,连接D1G,
在正方体ABCD-A1B1C1D1中,得 D1D⊥平面ABCD,
∴D1D⊥l,∵D1D∩DG=D,∴l⊥平面D1DG
∴D1G⊥l,即D1G的长即等于点D1与l间的距离.
∵l∥D1B1∥BD,∴∠DAG=45°.
∴DG=
| ||
2 |
则有 D1G=
DG2+D1D2 |
|
| ||
2 |
本题链接: