首页 > 数学 > 题目详情
在梯形ABCD中AD平行于BC,AB等于DC等于AD,角C等于60度,AE垂直于BD于点E,F是CD的中点,DG为梯形的
题目内容:
在梯形ABCD中AD平行于BC,AB等于DC等于AD,角C等于60度,AE垂直于BD于点E,F是CD的中点,DG为梯形的高
求证1,四边形ABCD是平行四边形
2设AE=x,四边形DEGF的面积为y,求y关于x的函数关系式优质解答
1、由题意知:AE为等腰△ABD的高,故BE=ED,
又F是CD的中点,CF=FD
故EF为△ACD的中位线,所以EF//BC//AD
因为ABCD为等腰梯形,故∠C=∠ABC=60,∠BAD=∠ADC=(2X180-60X2)/2=120
∠ADE=∠ABD=(180-120)/2=30
所以∠EDF=∠ADC-∠ADE=120-30=90
所以∠EDF=∠AED=90,故AE//DF
所以四边形AEFD是平行四边形
2、令EF、DG交于H,因为EF//BC,F为CD中点,所以HF为RT△DGC的中位线,且HF⊥ DG
所以DH=HG=DG/2
RT△AED中,∠ADE=30,所以AD=2AE=2x=EF,
ED= √(AD^2-AE^2)=√(4x^2-x^2)=√3x
RT△EHD中,∠DEH=∠ADE=30,所以DH=ED/2=√3x/2,
y=△DEF面积+△GEF面积=2△DEF面积=2*(2x*√3x/2/2)=√3x^2
求证1,四边形ABCD是平行四边形
2设AE=x,四边形DEGF的面积为y,求y关于x的函数关系式
优质解答
又F是CD的中点,CF=FD
故EF为△ACD的中位线,所以EF//BC//AD
因为ABCD为等腰梯形,故∠C=∠ABC=60,∠BAD=∠ADC=(2X180-60X2)/2=120
∠ADE=∠ABD=(180-120)/2=30
所以∠EDF=∠ADC-∠ADE=120-30=90
所以∠EDF=∠AED=90,故AE//DF
所以四边形AEFD是平行四边形
2、令EF、DG交于H,因为EF//BC,F为CD中点,所以HF为RT△DGC的中位线,且HF⊥ DG
所以DH=HG=DG/2
RT△AED中,∠ADE=30,所以AD=2AE=2x=EF,
ED= √(AD^2-AE^2)=√(4x^2-x^2)=√3x
RT△EHD中,∠DEH=∠ADE=30,所以DH=ED/2=√3x/2,
y=△DEF面积+△GEF面积=2△DEF面积=2*(2x*√3x/2/2)=√3x^2
本题链接: