首页 > 数学 > 题目详情
如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E. (1)试判断△BDE的形状,并说明理由
题目内容:
如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.
(1)试判断△BDE的形状,并说明理由;
(2)若AB=4,AD=8,求△BDE的面积.优质解答
(1)△BDE是等腰三角形.
由折叠可知,∠CBD=∠EBD,
∵AD∥BC,
∴∠CBD=∠EDB,
∴∠EBD=∠EDB,
∴BE=DE,
即△BDE是等腰三角形;
(2)设DE=x,则BE=x,AE=8-x,
在Rt△ABE中,由勾股定理得:AB2+AE2=BE2即42+(8-x)2=x2,
解得:x=5,
所以S△BDE=1 2
DE×AB=1 2
×5×4=10.
(1)试判断△BDE的形状,并说明理由;
(2)若AB=4,AD=8,求△BDE的面积.
优质解答
由折叠可知,∠CBD=∠EBD,
∵AD∥BC,
∴∠CBD=∠EDB,
∴∠EBD=∠EDB,
∴BE=DE,
即△BDE是等腰三角形;
(2)设DE=x,则BE=x,AE=8-x,
在Rt△ABE中,由勾股定理得:AB2+AE2=BE2即42+(8-x)2=x2,
解得:x=5,
所以S△BDE=
1 |
2 |
1 |
2 |
本题链接: