首页 > 数学 > 题目详情
如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.1.请判断四边形EFGH的形状?并说明为什么.
题目内容:
如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.1.请判断四边形EFGH的形状?并说明为什么.
2.若是四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?
优质解答
你的图画错了,现在是D点的地方应该是G点,而真正的D点没有标出
1.平行四边形
分别连接AC和BD
由中位线定理
有EH//BD,FG//BD,则EH//FG
同理可得GH//AC,EF//AC,GH//EF
由此可知EFGH是平行四边形
2.四边形ABCD的对角线相等
由1.可知
BD=2EH
AC=2EF
EFGH是正方形
EH=EF
因此BD=AC
即四边形ABCD的对角线相等 - 追问:
- ... 对,我不小心标错了。谢谢了
2.若是四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?
优质解答
1.平行四边形
分别连接AC和BD
由中位线定理
有EH//BD,FG//BD,则EH//FG
同理可得GH//AC,EF//AC,GH//EF
由此可知EFGH是平行四边形
2.四边形ABCD的对角线相等
由1.可知
BD=2EH
AC=2EF
EFGH是正方形
EH=EF
因此BD=AC
即四边形ABCD的对角线相等
- 追问:
- ... 对,我不小心标错了。谢谢了
本题链接: