已知:如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,求证:四边形EFGH是平行四边形.
2021-03-17 177次 反馈错误 加入收藏 正确率 : 100%
题目内容:
已知:如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,求证:四边形EFGH是平行四边形.
优质解答
首先你要知道 两组对边分别相等的四边形是平行四边形
三角形中位线等于底边长的一半
证明:连接AC、BD
因为E是AB中点,H是AD中点
所以EH是三角形ABD的中位线
所以EH=1/2BD
同理可得GF是三角形DBC的中位线
所以GF=1/2BD
所以EH=GF
同理可证HG=EF
所以四边形HEFG为平行四边形
本题链接: