在数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0). (Ⅰ)设bn=an+1-an(n∈N*),证明{bn}是等比数列; (Ⅱ)求数列{an}的通项公式; ...
2023-02-23 01:44:59 85次 2009-2010学年福建师大附中高二(上)期末数学试卷(理科)(解析版) 解答题 反馈错误 加入收藏 正确率 : 100%
题目内容:
在数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0).
(Ⅰ)设bn=an+1-an(n∈N*),证明{bn}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是an+3与an+6的等差中项.
本题链接: