首页 > 中学考试杂题 > 题目详情
如图,圆柱OO1内有一个三棱柱ABC-A1B1C1,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径. (I)证明:平面A1ACC1⊥平面B1BCC1; (Ⅱ)设AB=AA1,在圆柱OO1内随机选...
题目内容:
如图,圆柱OO1内有一个三棱柱ABC-A1B1C1,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径.
(I)证明:平面A1ACC1⊥平面B1BCC1;
(Ⅱ)设AB=AA1,在圆柱OO1内随机选取一点,记该点取自于三棱柱ABC-A1B1C1内的概率为P.
(i)当点C在圆周上运动时,求P的最大值;
(ii)记平面A1ACC1与平面B1OC所成的角为θ(0°≤θ≤90°),当P取最大值时,求cosθ的值.
本题链接: