首页 > 中学考试杂题 > 题目详情
已知定义在R上的函数f(x)和数列{an}满足下列条件:a1=a≠0,a2≠a1,当n∈N*时,an+1=f(an),且存在非零常数k使f(an+1)-f(an)=k(an+1-an)恒成立. (1)...
题目内容:
已知定义在R上的函数f(x)和数列{an}满足下列条件:a1=a≠0,a2≠a1,当n∈N*时,an+1=f(an),且存在非零常数k使f(an+1)-f(an)=k(an+1-an)恒成立.
(1)若数列{an}是等差数列,求k的值;
(2)求证:数列{an}为等比数列的充要条件是f(x)=kx(k≠1).
(3)已知f(x)=kx(k>1),a=2,且bn=lnan(n∈N*),数列{bn}的前n项是Sn,对于给定常数m,若的值是一个与n无关的量,求k的值.
本题链接: