首页 > 中学考试杂题 > 题目详情
已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+lnx(其中e是自然对数的底数,a∈R). (1)求f(x)的解析式; (2)设a=-1,,求证:当x∈...
题目内容:
已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+lnx(其中e是自然对数的底数,a∈R).
(1)求f(x)的解析式;
(2)设a=-1,,求证:当x∈(0,e]时,恒成立;
(3)是否存在负数a,使得当x∈(0,e]时,f(x)的最大值是-3?如果存在,求出实数a的值;如果不存在,请说明理由.
理科选修.
本题链接: