首页 > 中学考试杂题 > 题目详情
已知函数f(x)=ex(ax+1)(e为自然对数的底,a∈R为常数).对于函数h(x)和g(x),若存在常数k,m,对于任意x∈R,不等式h(x)≥kx+m≥g(x)都成立,则称直线y=kx+m是函数...
题目内容:
已知函数f(x)=ex(ax+1)(e为自然对数的底,a∈R为常数).对于函数h(x)和g(x),若存在常数k,m,对于任意x∈R,不等式h(x)≥kx+m≥g(x)都成立,则称直线y=kx+m是函数h(x),g(x)的分界线.
(1)讨论函数f(x)的单调性;
(2)设a=1,试探究函数f(x)与函数g(x)=-x2+2x+1是否存在“分界线”?若存在,求出分界线方程;若不存在,试说明理由.
本题链接: