首页 > 中学考试杂题 > 题目详情
A已知数列{an}是首项为,公比q=的等比数列,设,数列{cn}满足cn=an•bn. (1)求证:{bn}是等差数列; (2)求数列{cn}的前n项和Sn; (3)若对一切正整数n恒成立,求实数m的...
题目内容:
A已知数列{an}是首项为,公比q=的等比数列,设,数列{cn}满足cn=an•bn.
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn;
(3)若对一切正整数n恒成立,求实数m的取值范围.
B已知数列{an}和{bn}满足:a1=λ,,,其中λ为实数,n为正整数.
(Ⅰ)对任意实数λ,证明:数列{an}不是等比数列;
(Ⅱ)证明:当λ≠-18时,数列{bn}是等比数列;
(Ⅲ)设0<a<b(a,b为实常数),Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
本题链接: