首页 > 中学考试杂题 > 题目详情
对于区间[m,n]上有意义的两个函数f(x)与g(x),如果任意x∈[m,n],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的,否则称f(x)与g(x)在[m,n]上是非...
题目内容:
对于区间[m,n]上有意义的两个函数f(x)与g(x),如果任意x∈[m,n],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的,否则称f(x)与g(x)在[m,n]上是非接近的.现有两个函数f1(x)=loga(x-3a)与f2(x)=loga(a>0,a≠1)
(1)求f1(x)-f2(x)的定义域;
(2)若f1(x)与f2(x)在整个给定区间[a+2,a+3]上都有意义,
①求a的取值范围;
②讨论f1(x)与f2(x)在整个给定区间[a+2,a+3]上是不是接近的.
本题链接: