首页 > 中学考试杂题 > 题目详情
如图所示,平面,点在以为直径的上,,,点为线段的中点,点在弧上,且. (1)求证:平面平面; (2)求证:平面平面; (3)设二面角的大小为,求的值. 【答案】(1)证明见解析;(2)证明见解析;(3...
题目内容:
如图所示,平面,点在以为直径的上,,,点为线段的中点,点在弧上,且.
(1)求证:平面平面;
(2)求证:平面平面;
(3)设二面角的大小为,求的值.
【答案】(1)证明见解析;(2)证明见解析;(3).
【解析】试题分析:
(1)由△ABC中位线的性质可得,则平面.由线面平行的判断定理可得平面.结合面面平行的判断定理可得平面.
(2)由圆的性质可得,由线面垂直的性质可得,据此可知平面.利用面面垂直的判断定理可得平面平面.
(3)以为坐标原点,所在的直线为轴,所在的直线为轴,建立空间直角坐标系.结合空间几何关系计算可得平面的法向量,平面的一个法向量,则.由图可知为锐角,故.
试题解析:
(1)证明:因为点为线段的中点,点为线段的中点,
所以,因为平面,平面,所以平面.
因为,且平面,平面,所以平面.
因为平面,平面,,
所以平面平面.
(2)证明:因为点在以为直径的上,所以,即.
因为平面,平面,所以.
因为平面,平面,,所以平面.
因为平面,所以平面平面.
(3)【解析】
如图,以为坐标原点,所在的直线为轴,所在的直线为轴,建立空间直角坐标系.
因为,,所以,.
延长交于点.因为,
所以,,.
所以,,,.
所以,.
设平面的法向量.
因为,所以,即.
令,则,.
所以.
同理可求平面的一个法向量.
所以.由图可知为锐角,所以.
【题型】解答题
【结束】
21
已知圆,点,直线.
(1)求与圆相切,且与直线垂直的直线方程;
(2)在直线上(为坐标原点),存在定点(不同于点),满足:对于圆上任一点,都有为一常数,试求所有满足条件的点的坐标.
本题链接: