空间四边形abcd中,p,q,r分别是ab,ad,cd的中点,平面pqr交bc于s,求证四边形pqrs是平行四边形
2020-12-14 111次 反馈错误 加入收藏 正确率 : 100%
题目内容:
空间四边形abcd中,p,q,r分别是ab,ad,cd的中点,平面pqr交bc于s,求证四边形pqrs是平行四边形
优质解答
在bc上找中点e连接re,因为pqre分别是他们几个的中点,那么他们的对边就相互平行,四边形pqre是平行四边形,接下来只要证明s跟e重合就好了,要证重合,必须pqr跟pqre是同一个平面,要证这个,必须让pqr面内的两条相交直线都...
本题链接: