首页 > 数学 > 题目详情
已知:如图,▱ABCD中,AD=2AB,将CD向两边分别延长到E,F使CD=CE=DF.求证:AE⊥BF.
题目内容:
已知:如图,▱ABCD中,AD=2AB,将CD向两边分别延长到E,F使CD=CE=DF.求证:AE⊥BF.
优质解答
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠ABH=∠F,
∵CD=CE=DF,
∴AB=DF,
在△ABH和△DFH中,
∠ABH=∠F ∠AHB=∠DHF AB=DF
,
∴△ABH≌△DFH(AAS),
同理:△ABG≌△ECG,
∴AH=DH,BG=CG,
∵AD=2AB,
∴AH=AB=BG,
∴∠ABH=∠AHB,∠BAG=∠AGB,
∵∠CBH=∠AHB,∠DAG=∠AGB,
∴∠BAG=∠DAG,∠ABH=∠CBH,
∵∠DAB+∠ABC=180°,
∴∠BAG+∠ABH=90°,
∴AE⊥BF.
优质解答
∴AB=CD,AB∥CD,
∴∠ABH=∠F,
∵CD=CE=DF,
∴AB=DF,
在△ABH和△DFH中,
|
∴△ABH≌△DFH(AAS),
同理:△ABG≌△ECG,
∴AH=DH,BG=CG,
∵AD=2AB,
∴AH=AB=BG,
∴∠ABH=∠AHB,∠BAG=∠AGB,
∵∠CBH=∠AHB,∠DAG=∠AGB,
∴∠BAG=∠DAG,∠ABH=∠CBH,
∵∠DAB+∠ABC=180°,
∴∠BAG+∠ABH=90°,
∴AE⊥BF.
本题链接: