【设P是直线l:2x+y+9=0上的任一点,过点P作圆x2+y2=9的两条切线PA、PB,切点分别为A、B,则直线AB恒过定点___.】
2021-07-15 46次 反馈错误 加入收藏 正确率 : 100%
题目内容:
设P是直线l:2x+y+9=0上的任一点,过点P作圆x2+y2=9的两条切线PA、PB,切点分别为A、B,则直线AB恒过定点___.
优质解答
因为P是直线l:2x+y+9=0上的任一点,所以设P(m,-2m-9),
因为圆x2+y2=9的两条切线PA、PB,切点分别为A、B,
所以OA⊥PA,OB⊥PB,
则点A、B在以OP为直径的圆上,即AB是圆O和圆C的公共弦,
则圆心C的坐标是(,-),且半径的平方是r2=,
所以圆C的方程是(x-)2+(y+)2=,①
又x2+y2=9,②,
②-①得,mx-(2m+9)y-9=0,即公共弦AB所在的直线方程是:mx-(2m+9)y-9=0,
即m(x-2y)-(9y+9)=0,
由得,,
所以直线AB恒过定点(-2,-1),
故答案为:(-2,-1).
本题链接: