已知三棱柱P-ABC的三条棱PA=PB=PC,且O是三角形ABC的外心,求证:OP垂直于平面ABC
2021-07-20 52次 反馈错误 加入收藏 正确率 : 100%
题目内容:
已知三棱柱P-ABC的三条棱PA=PB=PC,且O是三角形ABC的外心,求证:OP垂直于平面ABC
优质解答
应该是三棱锥P-ABC吧.
图你就自己画吧
你可以过P作底面ABC的垂线,垂足为H
连接HA,HB,HC
因为PA=PB=PC,且PH⊥HA,PH⊥HB,PH⊥HC
由勾股定理可以知道,HA=HB=HC
所以H为△ABC的外心
即H与O重合
所以OP⊥面ABC
本题链接: