首页 > 数学 > 题目详情
f(x,y)为连续函数且f(x,y)=xy+∫D∫f(u,v)dб,D:y=0,y=x的平方x=1所围闭区证明:∫D∫f(x,y)dxdy=1/8
题目内容:
f(x,y)为连续函数且f(x,y)=xy+∫D∫f(u,v)dб,D:y=0,y=x的平方x=1所围闭区证明:∫D∫f(x,y)dxdy=1/8优质解答
注意二重积分都是定积分,它的值与积分变量无关,只取决于被积函数f 和积分区域D
所以方程右边的第二项 ∫∫f(u,v)dδ 可以看作一个常数,令之为A
方程左右两边同时在区域D上积分,得
A = ∫D∫xy dxdy + A ∫D∫dxdy
A = 1/12+A/3
求得A=1/8
优质解答
所以方程右边的第二项 ∫∫f(u,v)dδ 可以看作一个常数,令之为A
方程左右两边同时在区域D上积分,得
A = ∫D∫xy dxdy + A ∫D∫dxdy
A = 1/12+A/3
求得A=1/8
本题链接: