首页 > 数学 > 题目详情
【对于任意xy有f(x+y)=f(x)f(y)且x>0,f(x)>1,证明f(x)在R上为增函数】
题目内容:
对于任意xy 有f(x+y)=f(x)f(y)且x>0,f(x)>1,证明f(x)在R上为增函数优质解答
f(0)=[f(0)]^2
∴f(0)*[f(0)-1]=0
解得:f(0)=0或f(0)=1
∵当x>0时,
f(x)=f(x)*f(0)>1
∴f(0)≠0
∴
f(0)=1
f(0)=f(x-x)=f(x)*f(-x)=1
∴f(-x)=1/f(x)
∴
对于任意x∈R,有:f(x)>0
(PS:以上是证明f(x)恒大于0,这样才可以进行比较)
设,a<b,(a,b∈R)
则:
f(b)=f[a+(b-a)]=f(a)*f(b-a)
∵b-a>0
∴f(b-a)>1
∴f(b)/f(a)=f(b-a)>1
∵f(b)>0,f(a)>0
∴f(b)>f(a)
∴f(x)在R上为增函数
哪里还有疑问,再补充吧……
优质解答
∴f(0)*[f(0)-1]=0
解得:f(0)=0或f(0)=1
∵当x>0时,
f(x)=f(x)*f(0)>1
∴f(0)≠0
∴
f(0)=1
f(0)=f(x-x)=f(x)*f(-x)=1
∴f(-x)=1/f(x)
∴
对于任意x∈R,有:f(x)>0
(PS:以上是证明f(x)恒大于0,这样才可以进行比较)
设,a<b,(a,b∈R)
则:
f(b)=f[a+(b-a)]=f(a)*f(b-a)
∵b-a>0
∴f(b-a)>1
∴f(b)/f(a)=f(b-a)>1
∵f(b)>0,f(a)>0
∴f(b)>f(a)
∴f(x)在R上为增函数
哪里还有疑问,再补充吧……
本题链接: