首页 > 数学 > 题目详情
如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)
题目内容:
如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=CN.(2)若△CMN的面积与△CDN的面积比为3:1,求MN/DN的值.
优质解答
证明:(1)由折叠可知,∠CMN=∠NMCCN//BM∠NMC=∠CNM因,∠CMN=∠NMC∠NMC=∠NMC在三角形CMN中,∠NMC=∠NMC所以CM=CN(2)过点N作NH⊥BC于点H,则四边形NHCD是矩形,∴HC=DN,NH=DC,∵△CMN的面积与△CDN的面积比为3:1,∴S...
优质解答
本题链接: