首页 > 数学 > 题目详情
已知平行四边形ABCD中,对角线AC,BD交与点O,E是BD延长线上的一点,且三角形ACE是等边三角形.(1)求证:四边
题目内容:
已知平行四边形ABCD中,对角线AC,BD交与点O,E是BD延长线上的一点,且三角形ACE是等边三角形.
(1)求证:四边形ABCD是菱形;(2)如图(2),若∠AED=2∠EAD,AC=6,求DE的长.优质解答
证明:(1)∵四边形ABCD是平行四边形
∴OA=OC,
∵△ACE是等边三角形.
∴OE⊥AC,
∴BD⊥AC,
∴四边形ABCD是菱形;
(2)∵△ACE是等边三角形,OE⊥AC,
∴∠AEO=1/2∠AEC=30°
∵∠AED=2∠EAD,
∴∠EAD=15°
∴∠ADB=45°,
∵四边形ABCD是菱形,
∴AD=DC,BD⊥AC,
∴∠CDB=∠ADB=45°
∴∠ADC=90°,
∴△ADC是等腰直角三角形,
∴OA=OC=OD=1/2AC=3
∵△ACE是等边三角形,
∴∠EAO=60°
在Rt△AOE中,OE=OAtan60°=3根号3
∴DE=OE-OD=3根号3-3
(1)求证:四边形ABCD是菱形;(2)如图(2),若∠AED=2∠EAD,AC=6,求DE的长.
优质解答
∴OA=OC,
∵△ACE是等边三角形.
∴OE⊥AC,
∴BD⊥AC,
∴四边形ABCD是菱形;
(2)∵△ACE是等边三角形,OE⊥AC,
∴∠AEO=1/2∠AEC=30°
∵∠AED=2∠EAD,
∴∠EAD=15°
∴∠ADB=45°,
∵四边形ABCD是菱形,
∴AD=DC,BD⊥AC,
∴∠CDB=∠ADB=45°
∴∠ADC=90°,
∴△ADC是等腰直角三角形,
∴OA=OC=OD=1/2AC=3
∵△ACE是等边三角形,
∴∠EAO=60°
在Rt△AOE中,OE=OAtan60°=3根号3
∴DE=OE-OD=3根号3-3
本题链接: