首页 > 数学 > 题目详情
已知OA=(1,2,3),OB=(2,1,2),OP=(1,1,2),点Q在直线OP上运动,则当QA•QB取得最小值时,
题目内容:
已知OA
=(1,2,3),OB
=(2,1,2),OP
=(1,1,2),点Q在直线OP上运动,则当QA
•QB
取得最小值时,点Q的坐标为( )
A. (1 2
,3 4
,1 3
)
B. (1 2
,3 2
,3 4
)
C. (4 3
,4 3
,8 3
)
D. (4 3
,4 3
,7 3
)优质解答
设Q(x,y,z)
由点Q在直线OP上可得存在实数λ使得OQ
=λOP
,则有Q(λ,λ,2λ)
QA
=(1−λ,2−λ,3−2λ),QB
=(2−λ,1−λ,2−2λ)
当QA
•QB
=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)(2-2λ)=2(3λ2-8λ+5)
根据二次函数的性质可得当λ=4 3
时,取得最小值−2 3
此时Q (4 3
,4 3
,8 3
)
故选:C
OA |
OB |
OP |
QA |
QB |
A. (
1 |
2 |
3 |
4 |
1 |
3 |
B. (
1 |
2 |
3 |
2 |
3 |
4 |
C. (
4 |
3 |
4 |
3 |
8 |
3 |
D. (
4 |
3 |
4 |
3 |
7 |
3 |
优质解答
由点Q在直线OP上可得存在实数λ使得
OQ |
OP |
QA |
QB |
当
QA |
QB |
根据二次函数的性质可得当λ=
4 |
3 |
2 |
3 |
4 |
3 |
4 |
3 |
8 |
3 |
故选:C
本题链接: