首页 > 数学 > 题目详情
共线向量定理平面内有向量OA=(1,7),OB=(5,1),OP=(2,1),点X是直线OP上的一个动点.(1)当向量X
题目内容:
共线向量定理
平面内有向量OA=(1,7),OB=(5,1),OP=(2,1),点X是直线OP上的一个动点.
(1)当向量XA*XB取得最小值时,求向量OX的坐标
(2)当点X满足(1)的条件和结论时,求角AXB的余弦值
为什么XA*XB=(1-2m)(5-2m)=(7-m)(1-m)优质解答
点X在OP上,不妨设X的坐标是(2m,m)则XA=(1-2m,7-m),XB=(5-2m,1-m)XA*XB=(1-2m)(5-2m)+(7-m)(1-m)=(5-12m+4m²)+(7-8m+m²)=5m²-20m+12=5(m-2)²-8当m=2时XA*XB取得最小值,此时X的坐标是(4,2),OX=(4,...
平面内有向量OA=(1,7),OB=(5,1),OP=(2,1),点X是直线OP上的一个动点.
(1)当向量XA*XB取得最小值时,求向量OX的坐标
(2)当点X满足(1)的条件和结论时,求角AXB的余弦值
为什么XA*XB=(1-2m)(5-2m)=(7-m)(1-m)
优质解答
本题链接: