首页 > 数学 > 题目详情
拉格朗日乘数法(有兴趣的看看)x^2+y^2=z被x+y+z=1截成一个椭圆,求这个椭圆到原点的最长和最短距离.我是这样
题目内容:
拉格朗日乘数法(有兴趣的看看)
x^2+y^2=z被x+y+z=1截成一个椭圆,
求这个椭圆到原点的最长和最短距离.
我是这样做的:
联立:
x^2+y^2=z
x+y+z=1
得到:
x^2+y^2=1-x-y
那么问题不就是转化为求函数
f(x,y,z)=x^2+y^2+z^2在条件x^2+y^2=1-x-y下的最值问题吗?
然后应用拉格朗日乘数法,令
L(x,y,z,w)=x^2+y^2+z^2+w(x^2+y^2-1+x+y)
求出x,y,z,w
得到最后的结果
这样做行不行?
是有另外一种做法的:
问题转化为:
求函数f(x,y,z)=x^2+y^2+z^2在条件x^2+y^2-z=0,x+y+z-1=0下的最值问题
令L(x,y,z,w,p)=x^2+y^2+z^2+w(x^2+y^2-z)+p(x+y+z-1)
求出x,y,z,w,p,
得到最值
以上两种解法答案不一样
请问哪一种是正确的?优质解答
第二个方法正确
第一个方法
联立:
x^2+y^2=z
x+y+z=1
得到:
x^2+y^2=1-x-y
在原方程组中z>=0
而x^2+y^2=1-x-y对z无要求
所以才会求出最值不同
x^2+y^2=z被x+y+z=1截成一个椭圆,
求这个椭圆到原点的最长和最短距离.
我是这样做的:
联立:
x^2+y^2=z
x+y+z=1
得到:
x^2+y^2=1-x-y
那么问题不就是转化为求函数
f(x,y,z)=x^2+y^2+z^2在条件x^2+y^2=1-x-y下的最值问题吗?
然后应用拉格朗日乘数法,令
L(x,y,z,w)=x^2+y^2+z^2+w(x^2+y^2-1+x+y)
求出x,y,z,w
得到最后的结果
这样做行不行?
是有另外一种做法的:
问题转化为:
求函数f(x,y,z)=x^2+y^2+z^2在条件x^2+y^2-z=0,x+y+z-1=0下的最值问题
令L(x,y,z,w,p)=x^2+y^2+z^2+w(x^2+y^2-z)+p(x+y+z-1)
求出x,y,z,w,p,
得到最值
以上两种解法答案不一样
请问哪一种是正确的?
优质解答
第一个方法
联立:
x^2+y^2=z
x+y+z=1
得到:
x^2+y^2=1-x-y
在原方程组中z>=0
而x^2+y^2=1-x-y对z无要求
所以才会求出最值不同
本题链接: