首页 > 其它 > 题目详情
如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4.(1)求证:△ABE∽△ABD;(2)求tan∠ADB的值.
题目内容:
如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4.
(1)求证:△ABE∽△ABD;
(2)求tan∠ADB的值.优质解答
(1)证明:如图,连接AC,
∵点A是弧BC的中点,
∴∠ABC=∠ACB,
又∵∠ACB=∠ADB,
∴∠ABC=∠ADB.
又∵∠BAE=∠BAE,
∴△ABE∽△ABD;
(2)∵AE=2,ED=4,
∴AD=AE+ED=2+4=6,
∵△ABE∽△ABD,BD为⊙O的直径,
∴∠BAD=90°,
∵△ABE∽△ABD,
∴AE AB
=AB AD
,
∴AB2=AE•AD=2×6=12,
∴AB=23
,
在Rt△ADB中,tan∠ADB=23
6
=3
3
.
(1)求证:△ABE∽△ABD;
(2)求tan∠ADB的值.
优质解答
∵点A是弧BC的中点,
∴∠ABC=∠ACB,
又∵∠ACB=∠ADB,
∴∠ABC=∠ADB.
又∵∠BAE=∠BAE,
∴△ABE∽△ABD;
(2)∵AE=2,ED=4,
∴AD=AE+ED=2+4=6,
∵△ABE∽△ABD,BD为⊙O的直径,
∴∠BAD=90°,
∵△ABE∽△ABD,
∴
AE |
AB |
AB |
AD |
∴AB2=AE•AD=2×6=12,
∴AB=2
3 |
在Rt△ADB中,tan∠ADB=
2
| ||
6 |
| ||
3 |
本题链接: