首页 > 中学数学试题 > 题目详情
建立模型: 如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上. 操作: 过点A作AD⊥l于点D,过点B作BE⊥l于点E.求证:△CAD≌△BCE. 模型应用: (1)如图2,在直角坐标...
题目内容:
建立模型:
如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.
操作:
过点A作AD⊥l于点D,过点B作BE⊥l于点E.求证:△CAD≌△BCE.
模型应用:
(1)如图2,在直角坐标系中,直线l1:y=x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.
(2)如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.
本题链接: