首页 > 中学数学试题 > 题目详情
背景介绍:勾股定理是几何学中的明珠,充满着魅力.千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者.向常春在1994年构造发现了一个新的证法. 小试牛刀:把两个全等的直角三角形如...
题目内容:
背景介绍:勾股定理是几何学中的明珠,充满着魅力.千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者.向常春在1994年构造发现了一个新的证法.
小试牛刀:把两个全等的直角三角形如图1放置,其三边长分别为a、b、c.显然,
∠DAB=∠B=90°,AC⊥DE.请用a、b、c分别表示出梯形ABCD、四边形AECD、△EBC的面积,再探究这三个图形面积之间的关系,可得到勾股定理:
S梯形ABCD= ,
S△ABC= ,
S四边形AECD= ,
则它们满足的关系式为 经化简,可得到勾股定理.
知识运用:
(1)如图2,铁路上A、B两点(看作直线上的两点)相距40千米,C、D为两个村庄(看作两个点),AD⊥AB,BC⊥AB,垂足分别为A、B,AD=25千米,BC=16千米,则两个村庄的距离为 千米(直接填空);
(2)在(1)的背景下,若AB=40千米,AD=24千米,BC=16千米,要在AB上建造一个供应站P,使得PC=PD,请用尺规作图在图2中作出P点的位置并求出AP的距离.
知识迁移:借助上面的思考过程与几何模型,求代数式的最小值(0<x<16)
本题链接: