首页 > 中学数学试题 > 题目详情
已知抛物线y=x2﹣(k+2)x+和直线y=(k+1)x+(k+1)2. (1)求证:无论k取何实数值,抛物线总与x轴有两个不同的交点; (2)抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、...
题目内容:
已知抛物线y=x2﹣(k+2)x+和直线y=(k+1)x+(k+1)2.
(1)求证:无论k取何实数值,抛物线总与x轴有两个不同的交点;
(2)抛物线于x轴交于点A、B,直线与x轴交于点C,设A、B、C三点的横坐标分别是x1、x2、x3,求x1•x2•x3的最大值;
(3)如果抛物线与x轴的交点A、B在原点的右边,直线与x轴的交点C在原点的左边,又抛物线、直线分别交y轴于点D、E,直线AD交直线CE于点G(如图),且CA•GE=CG•AB,求抛物线的解析式.
本题链接: