首页 > 中学数学试题 > 题目详情
如图1,将一个直角三角板的直角顶点P放在正方形ABCD的对角线BD上滑动,并使其一条直角边始终经过点A,另一条直角边与BC相交于点E. (1)求证:PA=PE; (2)若将(1)中的正方形变为矩形,其...
题目内容:
如图1,将一个直角三角板的直角顶点P放在正方形ABCD的对角线BD上滑动,并使其一条直角边始终经过点A,另一条直角边与BC相交于点E.
(1)求证:PA=PE;
(2)若将(1)中的正方形变为矩形,其余条件不变(如图2),且AD=10,DC=8,求AP:PE;
(3)在(2)的条件下,当P滑动到BD的延长线上时(如图3),请你直接写出AP:PE的比值.
【答案】(1)证明见解析;(2)AP:PE=5:4;(3)AP:PE=5:4;
【解析】
试题分析:(1)过P作PM⊥AB于M,PN⊥BC于N,四边形BMPN是正方形,得出PM=PN,∠MPN=90°,求出∠APM=∠NPE,∠AMP=∠PNE,证△APM≌△EPN,推出AP=PE即可;
(2)证△BPM∽△BDA,△BNP∽△BCD,得出,,推出,求出,证△APM∽△EPN,推出即可;
(3)过P作PM⊥AB于M,PN⊥BC于N,证△BPM∽△BDA,△BNP∽△BCD,得出,,推出,求出,证△APM∽△EPN,推出即可.
试题解析:(1)证明:过P作PM⊥AB于M,PN⊥BC于N,
∵四边形ABCD是正方形,
∴∠ABD=45°,
∴∠MPB=45°=∠ABD,
∴PM=BM,
同理BP=BN,
∵四边形ABCD是正方形,
∴∠ABC=90°=∠BMP=∠BNP,
∴四边形BMPN是正方形,
∴PM=PN,∠MPN=90°,
∵∠APE=90°,
∴都减去∠MPE得:∠APM=∠NPE,
∵PM⊥AB,PN⊥BC,
∴∠AMP=∠PNE,
在△APM和△EPN中
∴△APM≌△EPN(ASA),
∴AP=PE;
(2)【解析】
∵四边形ABCD是矩形,
∴∠BAD=∠C=90°,
∵∠PMB=ϖPNB=90°,
∴PM∥AD,PN∥CD,
∴△BPM∽△BDA,△BNP∽△BCD,
∴,,,
∴,
∴,
∵∠AMP=∠ENP=90°,∠MPA=∠EPN,
∴△APM∽△EPN,
∴=,
AP:PE=5:4;
(3)【解析】
AP:PE=5:4.
考点:相似形综合题.
【题型】解答题
【适用】一般
【标题】2015届山东省威海市乳山市中考一模数学试卷(带解析)
【关键字标签】
【结束】
如图,直线y=-x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(-1,0).
(1)求B,C两点坐标;
(2)求该二次函数的关系式;
(3)若抛物线的对称轴与x轴的交点为点D,点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;
(4)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明问题.
本题链接: