首页 > 中学数学试题 > 题目详情
高一上期末数学考试解题疑问:10,对于函数f(x)=cosx+sinx,给出下列四个命题:1)存在a∈(0,π/2),使
题目内容:
高一上期末数学考试解题疑问:10,对于函数f(x)=cosx+sinx,给出下列四个命题:
1)存在a∈(0,π/2),使f(a)=4/3;
2)存在a∈(0,π/2),使f(x+a)=f(x+3a) 3) 存在φ∈R,使函数f(x+φ)的图像关于y轴对称
4)函数f(x)的图像关于点(3π/4,0)对称
其中正确命题的个数是
A 1 B 2 C 3 D 4
1.f(x)=cosx+sinx=√2sin(x+π/4),
当x∈(0,π/2)时,(x+π/4) ∈(π/4,3π/4),
所以sin(x+π/4) ∈(√2/2,1),f(x)∈(1,√2),
而4/3∈(1,√2),所以第一个命题成立.
2.f(x+α)=f(x+3α),说明函数的周期是2α,
而f(x)=cosx+sinx=√2sin(x+π/4)的最小正周期是2π,
则2α=2π,α=π.π不属于(0,π/2).
所以第二个命题不成立.
3.θ=π/4时,f(x+θ)= √2sin(x+π/4+π/4)= √2sin(x+π/2) =√2cosx是偶函数,偶函数的图像关于y轴对称.
所以存在θ=π/4,使函数f(x+θ)的图象关于y轴对称,该命题成立.
4.x=3π/4时,f(3π/4)=√2sin(3π/4 +π/4)=0,所以图象关于点(3π/4,0)对称,该命题成立
4.x=3π/4时,f(3π/4)=√2sin(3π/4 +π/4)=0,为什么x=3π/4时,f(3π/4)=0就说明图像关于点(3π/4,0)对称,能说明点(3π/4,0)在图像上呀?
高一上期末数学考试解题疑问:10,对于函数f(x)=cosx+sinx,给出下列四个命题:
1)存在a∈(0,π/2),使f(a)=4/3;
2)存在a∈(0,π/2),使f(x+a)=f(x+3a) 3) 存在φ∈R,使函数f(x+φ)的图像关于y轴对称
4)函数f(x)的图像关于点(3π/4,0)对称
其中正确命题的个数是
A 1 B 2 C 3 D 4
1.f(x)=cosx+sinx=√2sin(x+π/4),
当x∈(0,π/2)时,(x+π/4) ∈(π/4,3π/4),
所以sin(x+π/4) ∈(√2/2,1),f(x)∈(1,√2),
而4/3∈(1,√2),所以第一个命题成立.
2.f(x+α)=f(x+3α),说明函数的周期是2α,
而f(x)=cosx+sinx=√2sin(x+π/4)的最小正周期是2π,
则2α=2π,α=π.π不属于(0,π/2).
所以第二个命题不成立.
3.θ=π/4时,f(x+θ)= √2sin(x+π/4+π/4)= √2sin(x+π/2) =√2cosx是偶函数,偶函数的图像关于y轴对称.
所以存在θ=π/4,使函数f(x+θ)的图象关于y轴对称,该命题成立.
4.x=3π/4时,f(3π/4)=√2sin(3π/4 +π/4)=0,所以图象关于点(3π/4,0)对称,该命题成立
4.x=3π/4时,f(3π/4)=√2sin(3π/4 +π/4)=0,为什么x=3π/4时,f(3π/4)=0就说明图像关于点(3π/4,0)对称,能说明点(3π/4,0)在图像上呀?
1)存在a∈(0,π/2),使f(a)=4/3;
2)存在a∈(0,π/2),使f(x+a)=f(x+3a) 3) 存在φ∈R,使函数f(x+φ)的图像关于y轴对称
4)函数f(x)的图像关于点(3π/4,0)对称
其中正确命题的个数是
A 1 B 2 C 3 D 4
1.f(x)=cosx+sinx=√2sin(x+π/4),
当x∈(0,π/2)时,(x+π/4) ∈(π/4,3π/4),
所以sin(x+π/4) ∈(√2/2,1),f(x)∈(1,√2),
而4/3∈(1,√2),所以第一个命题成立.
2.f(x+α)=f(x+3α),说明函数的周期是2α,
而f(x)=cosx+sinx=√2sin(x+π/4)的最小正周期是2π,
则2α=2π,α=π.π不属于(0,π/2).
所以第二个命题不成立.
3.θ=π/4时,f(x+θ)= √2sin(x+π/4+π/4)= √2sin(x+π/2) =√2cosx是偶函数,偶函数的图像关于y轴对称.
所以存在θ=π/4,使函数f(x+θ)的图象关于y轴对称,该命题成立.
4.x=3π/4时,f(3π/4)=√2sin(3π/4 +π/4)=0,所以图象关于点(3π/4,0)对称,该命题成立
4.x=3π/4时,f(3π/4)=√2sin(3π/4 +π/4)=0,为什么x=3π/4时,f(3π/4)=0就说明图像关于点(3π/4,0)对称,能说明点(3π/4,0)在图像上呀?
本题链接: