首页 > 中学数学试题 > 题目详情
已知抛物线y=1/4x~2和直线y=ax+1 1.求证:已知抛物线y=1/4x^2和直线y=ax+1 1.求证:无论a取
题目内容:
已知抛物线y=1/4x~2和直线y=ax+1 1.求证:
已知抛物线y=1/4x^2和直线y=ax+1
1.求证:无论a取何值,抛物线与直线必有两个不同交点.
2.设A(X1,Y1) ,B(X2,Y2) 是抛物线与直线的两交点,点P为线段AB的中点,且点P的横坐标为(X1+X2) /2,试用a 表示P的横坐标;
3.A、B两点的距离 d= (根号下1+a^2) 乘以(X1—X2的绝对值) ,试用a表示 d. 4.过点C( 0,—1) 作直线L平行与X轴,试判断直线L与以AB为直径的圆的位置关系,并说明理由.
证(2) (3) (4)就好 谢谢
已知抛物线y=1/4x~2和直线y=ax+1 1.求证:
已知抛物线y=1/4x^2和直线y=ax+1
1.求证:无论a取何值,抛物线与直线必有两个不同交点.
2.设A(X1,Y1) ,B(X2,Y2) 是抛物线与直线的两交点,点P为线段AB的中点,且点P的横坐标为(X1+X2) /2,试用a 表示P的横坐标;
3.A、B两点的距离 d= (根号下1+a^2) 乘以(X1—X2的绝对值) ,试用a表示 d. 4.过点C( 0,—1) 作直线L平行与X轴,试判断直线L与以AB为直径的圆的位置关系,并说明理由.
证(2) (3) (4)就好 谢谢
已知抛物线y=1/4x^2和直线y=ax+1
1.求证:无论a取何值,抛物线与直线必有两个不同交点.
2.设A(X1,Y1) ,B(X2,Y2) 是抛物线与直线的两交点,点P为线段AB的中点,且点P的横坐标为(X1+X2) /2,试用a 表示P的横坐标;
3.A、B两点的距离 d= (根号下1+a^2) 乘以(X1—X2的绝对值) ,试用a表示 d. 4.过点C( 0,—1) 作直线L平行与X轴,试判断直线L与以AB为直径的圆的位置关系,并说明理由.
证(2) (3) (4)就好 谢谢
本题链接: