首页 > 中学考试杂题 > 题目详情
已知n次多项式Sn(x)=(1+2x)(1+4x)(1+8x)…(1+2nx),其中n是正整数.记Sn(x)的展开式中x的系数是an,x2的系数是bn. (Ⅰ)求an; (Ⅱ)证明:bn+1-bn=4...
题目内容:
已知n次多项式Sn(x)=(1+2x)(1+4x)(1+8x)…(1+2nx),其中n是正整数.记Sn(x)的展开式中x的系数是an,x2的系数是bn.
(Ⅰ)求an;
(Ⅱ)证明:bn+1-bn=4n+1-2n+2;
(Ⅲ)是否存在等比数列{cn}和正数c,使得bn=(cn-c)(cn+1-c)对任意正整数n成立?若存在,求出通项cn和正数c;若不存在,说明理由.
本题链接: