首页 > 中学考试杂题 > 题目详情
设椭圆,定义椭圆的“伴随圆”方程为;若抛物线的焦点与椭圆C的一个短轴端点重合,且椭圆C的离心率为. (1)求椭圆C的方程和“伴随圆”E的方程; (2)过“伴随圆”E上任意一点P作椭圆C的两条切线PA,...
题目内容:
设椭圆,定义椭圆的“伴随圆”方程为;若抛物线的焦点与椭圆C的一个短轴端点重合,且椭圆C的离心率为.
(1)求椭圆C的方程和“伴随圆”E的方程;
(2)过“伴随圆”E上任意一点P作椭圆C的两条切线PA,PB,A,B为切点,延长PA与“伴随圆”E交于点Q,O为坐标原点.
(i)证明:PA⊥PB;
(ii)若直线OP,OQ的斜率存在,设其分别为,试判断是否为定值,若是, 求出该值;若不是,请说明理由.
本题链接: