首页 > 中学考试杂题 > 题目详情
已知函数f(x)是在(0,+∞)上每一点处可导的函数,若xf′(x)>f(x)在(0,+∞)上恒成立. (Ⅰ)求证:函数g(x)=在(0,+∞)上单调递增; (Ⅱ)当x1>0,x2>0时,证明:f(x...
题目内容:
已知函数f(x)是在(0,+∞)上每一点处可导的函数,若xf′(x)>f(x)在(0,+∞)上恒成立.
(Ⅰ)求证:函数g(x)=在(0,+∞)上单调递增;
(Ⅱ)当x1>0,x2>0时,证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)已知不等式ln(1+x)<x在x>-1且x≠0时恒成立,证明:ln22+ln32+ln42+…+ln(n+1)2>(n∈N+).
本题链接: