首页 > 中学考试杂题 > 题目详情
有n(n≥3,n∈N*)个首项为1,项数为n的等差数列,设其第m(m≤n,m∈N*)个等差数列的第k项为amk(k=1,2,3,…,n),且公差为dm.若d1=1,d2=3,a1n,a2n,a3n,…...
题目内容:
有n(n≥3,n∈N*)个首项为1,项数为n的等差数列,设其第m(m≤n,m∈N*)个等差数列的第k项为amk(k=1,2,3,…,n),且公差为dm.若d1=1,d2=3,a1n,a2n,a3n,…,ann也成等差数列.
(Ⅰ)求dm(3≤m≤n)关于m的表达式;
(Ⅱ)将数列dm分组如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9)…,
(每组数的个数组成等差数列),设前m组中所有数之和为(cm)4(cm>0),求数列{2cmdm}的前n项和Sn;
(Ⅲ)设N是不超过20的正整数,当n>N时,对于(Ⅱ)中的Sn,求使得不等式成立的所有N的值.
本题链接: