设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1)) 处的切线垂直于y轴. (Ⅰ)用a分别表示b和c; (Ⅱ)当bc取得最小值时,求函数g(x...
2023-02-24 21:54:42 46次 2008-2009学年北京101中学高三(上)9月统考数学试卷(理科)(解析版) 解答题 反馈错误 加入收藏 正确率 : 100%
题目内容:
设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))
处的切线垂直于y轴.
(Ⅰ)用a分别表示b和c;
(Ⅱ)当bc取得最小值时,求函数g(x)=-f(x)e-x的单调区间.
本题链接: