首页 > 中学考试杂题 > 题目详情
如图(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别为线段PC、PD、BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD(图(2)). ...
题目内容:
如图(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别为线段PC、PD、BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD(图(2)).
(1)若点Q是线段PB的中点,求证:PC⊥平面ADQ;
(2)求二面角G-EF-D的余弦值.
(3)若K为△PAD的重心,H在线段EG上,KH∥平面PDC,求出H到面PAC的距离.
本题链接: