首页 > 中学考试杂题 > 题目详情
在数列{an}中,如果存在非零常数T,使得am+T=am对于任意的非零自然数m均成立,那么就称数列{an}为周期数列,其中T叫做数列{an}的周期,已知数列{xn}满足xn+1=|xn-xn-1|(n...
题目内容:
在数列{an}中,如果存在非零常数T,使得am+T=am对于任意的非零自然数m均成立,那么就称数列{an}为周期数列,其中T叫做数列{an}的周期,已知数列{xn}满足xn+1=|xn-xn-1|(n≥2,n∈N),如果x1=1,x2=a(a∈R,a≠0),当数列{xn}的周期最小时,该数列的前2008项和是( )
A.669
B.670
C.1338
D.1339
本题链接: