首页 > 中学考试杂题 > 题目详情
给出下列四个命题: ①“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x≤0”; ②对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0, 则...
题目内容:
给出下列四个命题:
①“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x≤0”;
②对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,
则x<0时,f′(x)>g′(x);
③函数是偶函数;
④若对∀x∈R,函数f(x)满足f(x+2)=-f(x),则4是该函数的一个周期,
其中所有真命题的序号为 (注:将真命题的序号全部填上)
本题链接: