首页 > 中学考试杂题 > 题目详情
已知函数y=x+(x>0)有如下性质:如果常数a>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数. (1)如果函数y=x+(x>0)的值域为[6,+∞),求b的值; (2)研究函数y=x2...
题目内容:
已知函数y=x+(x>0)有如下性质:如果常数a>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.
(1)如果函数y=x+(x>0)的值域为[6,+∞),求b的值;
(2)研究函数y=x2+(x>0,常数c>0)在定义域内的单调性,并用定义证明(若有多个单调区间,请选择一个证明);
(3)对函数y=x+和y=x2+(x>0,常数a>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数F(x)=+在区间[,2]上的最大值和最小值(可利用你的研究结论).
本题链接: