首页 > 中学考试杂题 > 题目详情
已知函数f(x)(x∈R)满足下列条件:对任意的实数x1,x2都有λ(x1-x2)2≤(x1-x2)[f(x1)-f(x2)]和|f(x1)-f(x2)|≤|x1-x2|,其中λ是大于0的常数,设实数...
题目内容:
已知函数f(x)(x∈R)满足下列条件:对任意的实数x1,x2都有λ(x1-x2)2≤(x1-x2)[f(x1)-f(x2)]和|f(x1)-f(x2)|≤|x1-x2|,其中λ是大于0的常数,设实数a,a,b满足f(a)=0和b=a-λf(a)
(Ⅰ)证明λ≤1,并且不存在b≠a,使得f(b)=0;
(Ⅱ)证明(b-a)2≤(1-λ2)(a-a)2;
本题链接: