首页 > 中学考试杂题 > 题目详情
定义:离心率的椭圆为“黄金椭圆”,已知椭圆的一个焦点为F(c,0)(c>0),P为椭圆E上的任意一点. (1)试证:若a,b,c不是等比数列,则E一定不是“黄金椭圆”; (2)没E为黄金椭圆,问:是否...
题目内容:
定义:离心率的椭圆为“黄金椭圆”,已知椭圆的一个焦点为F(c,0)(c>0),P为椭圆E上的任意一点.
(1)试证:若a,b,c不是等比数列,则E一定不是“黄金椭圆”;
(2)没E为黄金椭圆,问:是否存在过点F、P的直线l,使l与y轴的交点R满足?若存在,求直线l的斜率k;若不存在,请说明理由;
(3)已知椭圆E的短轴长是2,点S(0,2),求使取最大值时点P的坐标.
本题链接: