首页 > 中学考试杂题 > 题目详情
已知函数f(x)=px2+qx,其中p>0,p+q>1,对于数列{an},设它的前n项和为Sn,且满足Sn=f(n)(n∈N*). (1)求数列{an}的通项公式,并证明an+1>an>1(n∈N*)...
题目内容:
已知函数f(x)=px2+qx,其中p>0,p+q>1,对于数列{an},设它的前n项和为Sn,且满足Sn=f(n)(n∈N*).
(1)求数列{an}的通项公式,并证明an+1>an>1(n∈N*);
(2)求证:点在同一直线l1上;
(3)若过点N1(1,a1),N2(2,a2)作直线l2,设l2与l1的夹角为θ,求tanθ的最大值.
本题链接: