定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a,b∈R,有f(a+b)=f(a)•f(b), (1)求f(0)的值; (2)求证:对任意的x∈R,恒有f(x)>0;...
2023-02-05 08:49:48 56次 2012-2013学年四川省南充市仪陇二中高一(上)第一次月考数学试卷(解析版) 解答题 反馈错误 加入收藏 正确率 : 100%
题目内容:
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a,b∈R,有f(a+b)=f(a)•f(b),
(1)求f(0)的值;
(2)求证:对任意的x∈R,恒有f(x)>0;
(3)判断f(x)的单调性,并证明你的结论.
本题链接: